Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.

Identifieur interne : 003088 ( Main/Exploration ); précédent : 003087; suivant : 003089

The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.

Auteurs : Kamel Chibani [France] ; Jérémy Couturier ; Benjamin Selles ; Jean-Pierre Jacquot ; Nicolas Rouhier

Source :

RBID : pubmed:19902380

Descripteurs français

English descriptors

Abstract

The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol-disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.

DOI: 10.1007/s11120-009-9501-8
PubMed: 19902380


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.</title>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex</wicri:regionArea>
<wicri:noRegion>Vandoeuvre-lès-Nancy Cedex</wicri:noRegion>
<wicri:noRegion>Vandoeuvre-lès-Nancy Cedex</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
</author>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19902380</idno>
<idno type="pmid">19902380</idno>
<idno type="doi">10.1007/s11120-009-9501-8</idno>
<idno type="wicri:Area/Main/Corpus">003397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003397</idno>
<idno type="wicri:Area/Main/Curation">003397</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003397</idno>
<idno type="wicri:Area/Main/Exploration">003397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.</title>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
<affiliation wicri:level="1">
<nlm:affiliation>Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex</wicri:regionArea>
<wicri:noRegion>Vandoeuvre-lès-Nancy Cedex</wicri:noRegion>
<wicri:noRegion>Vandoeuvre-lès-Nancy Cedex</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
</author>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="eISSN">1573-5079</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Antioxidants (physiology)</term>
<term>Carbohydrate Metabolism (physiology)</term>
<term>Chloroplasts (enzymology)</term>
<term>Chloroplasts (metabolism)</term>
<term>Chloroplasts (physiology)</term>
<term>Ferredoxins (metabolism)</term>
<term>Genes, Plant (genetics)</term>
<term>Genes, Plant (physiology)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutaredoxins (physiology)</term>
<term>Photosynthesis (physiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Proteomics (MeSH)</term>
<term>Stress, Physiological (physiology)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antioxydants (métabolisme)</term>
<term>Antioxydants (physiologie)</term>
<term>Chloroplastes (enzymologie)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Chloroplastes (physiologie)</term>
<term>Ferrédoxines (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutarédoxines (physiologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Gènes de plante (physiologie)</term>
<term>Métabolisme glucidique (physiologie)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéomique (MeSH)</term>
<term>Stress physiologique (physiologie)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Ferredoxins</term>
<term>Glutaredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Antioxidants</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Chloroplastes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Chloroplasts</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Chloroplastes</term>
<term>Ferrédoxines</term>
<term>Glutarédoxines</term>
<term>Populus</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Antioxydants</term>
<term>Chloroplastes</term>
<term>Glutarédoxines</term>
<term>Gènes de plante</term>
<term>Métabolisme glucidique</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Chloroplasts</term>
<term>Genes, Plant</term>
<term>Photosynthesis</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Protéomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol-disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19902380</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5079</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.</ArticleTitle>
<Pagination>
<MedlinePgn>75-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11120-009-9501-8</ELocationID>
<Abstract>
<AbstractText>The post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiol-disulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chibani</LastName>
<ForeName>Kamel</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Unité Mixte de Recherches 1136 INRA-Nancy Université, Interactions Arbre-Microorganismes IFR 110 EFABA, Vandoeuvre-lès-Nancy Cedex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Jérémy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Selles</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005288">Ferredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005288" MajorTopicYN="N">Ferredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>164</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19902380</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-009-9501-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 22;348(2):478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16884685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 16;271(7):3333-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):218-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jan;45(1):18-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jun;14(6):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19446492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):244-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):44946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12270927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 30;284(5):2603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18986981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 6;400(3):293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9009217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jul 24;580(17):4086-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Apr;6 Suppl 1:S186-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16526092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Sep 3;583(17):2827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Apr;4(4):136-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Dec;6(24):6528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9653199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Dec 18;40(50):15444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11735429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):566-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Feb 15;458(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17239812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 5;448(7149):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 6;282(27):19282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(7):1591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 24;272(43):26985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9341136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jan;216(3):454-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 11;280(6):4713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):233-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):300-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):202-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jun;65(11):1629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15276458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;73(1-3):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Sep;4(9):2696-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15352244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jul;44(7):655-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1559-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Feb;21(3):305-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):670-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2008 Aug;18(8):1364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Nov;7(21):3953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(1):212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(5):602-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):308-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Dec 1;18(23):6809-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 Pt 2):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):1315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19287002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 17;579(2):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jul;15(2):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9721674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 1;283(31):21571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18534986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jun;46(6):1007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15259-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jul;11(7):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 May;269(9):2414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;74(3):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Sep;23(6):723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):193-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Mar;29(5):545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11874568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 20;401(2-3):143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9013875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 May;4(5):166-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Apr 4;34(13):4299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7703243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):811-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(1):225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 16;275(24):18034-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):416-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Mar 1;378(Pt 2):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Nov 13;580(26):6055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3784-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Jan 30;511(1-3):145-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 17;281(46):35039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16997915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8986759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 May;179(1):41-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 8;272(32):19851-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Apr 13;355(3):722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):247-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Sep 21;505(3):405-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Sep 18;581(23):4371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 12;277(15):12572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;72(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 15;284(20):13940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 6;38(14):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10194350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 4;278(27):24409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 28;117(5):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Aug 6;582(18):2773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 May 6;583(9):1399-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Jun;51(6):343-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 16;276(46):42881-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 9;274(28):19714-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98 (20):11224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
</noCountry>
<country name="France">
<noRegion>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19902380
   |texte=   The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19902380" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020